Photo by Christian Fregnan on Unsplash
어떤 명제가 참이라는 것은 무슨 뜻인가? 이 질문에 대한 답변 중 하나가 정합설이다. 정합설에 따르면, 어떤 명제가 참인 것은 그 명제가 다른 명제와 정합적이기 때문이다. 그러면 ‘정합적이다’는 무슨 의미인가? 정합적이라는 것은 명제들 간의 특별한 관계인데, 이 특별한 관계가 무엇인지에 대해 전통적으로는 ‘모순 없음’과 ‘함축’, 그리고 최근에는 ‘설명적 연관’ 등으로 정의해 왔다.
먼저 ‘정합적이다’를 모순 없음으로 정의하는 경우, 추가되는 명제가 이미 참이라고 ㉠ 인정한 명제와 모순이 없으면 정합적이고, 모순이 있으면 정합적이지 않다. 여기서 모순이란 “은주는 민수의 누나이다.”와 “은주는 민수의 누나가 아니다.”처럼 ㉮ 동시에 참이 될 수도 없고 또 동시에 거짓이 될 수도 없는 명제들 간의 관계를 말한다. ‘정합적이다’를 모순 없음으로 정의하는 입장에 따르면, “은주는 민수의 누나이다.”가 참일 때 추가되는 명제 “은주는 학생이다.”는 앞의 명제와 모순이 되지 않기 때문에 정합적이고, 정합적이기 때문에 참이다. 그런데 ‘정합적이다’를 모순 없음으로 이해하면, 앞의 예에서처럼 전혀 관계가 없는 명제들도 모순이 ㉡ 발생하지 않는다는 이유 하나만으로 모두 정합적이고 참이 될 수 있다는 문제가 생긴다.
이 문제를 ㉢ 해결하기 위해서 ‘정합적이다’를 함축으로 정의하기도 한다. 함축은 “은주는 민수의 누나이다.”가 참일 때 “은주는 여자이다.”는 반드시 참이 되는 것과 같은 관계를 이른다. 명제 A가 명제 B를 함축한다는 것은 ‘A가 참일 때 B가 반드시 참’이라는 의미이다. ‘정합적이다’를 함축으로 이해하면, 명제 “은주는 민수의 누나이다.”가 참일 때 이와 무관한 명제 “은주는 학생이다.”는 모순이 없다고 해도 정합적이지 않다. 왜냐하면 “은주는 학생이다.”는 “은주는 민수의 누나이다.”에 의해 함축되지 않기 때문이다.
그런데 ‘정합적이다’를 함축으로 정의할 경우에는 참이 될 수 있는 명제가 ㉣ 과도하게 제한된다. 그래서 ‘정합적이다’를 설명적 연관으로 정의하기도 한다. 명제 “민수는 운동 신경이 좋다.”는 “민수는 농구를 잘한다.”는 명제를 함축하지는 않지만, 민수가 농구를 잘하는 이유를 그럴듯하게 설명해 준다. 그 역의 관계도 마찬가지이다. 두 경우 각각 설명의 대상이 되는 명제와 설명해 주는 명제 사이에는 서로 설명적 연관이 있다고 말한다. 설명적 연관이 있는 두 명제는 서로 정합적이기 때문에 그중 하나가 참이면 추가되는 다른 하나도 참이다. 설명적 연관으로 ‘정합적이다’를 정의하게 되면 함축 관계를 이루는 명제들까지도 ㉤ 포괄할 수 있는 장점이 있다. 함축 관계를 이루는 명제들은 필연적으로 설명적 연관이 있기 때문이다. ‘정합적이다’를 설명적 연관으로 정의하면, 함축으로 이해하는 것보다는 많은 수의 명제를 참으로 추가할 수 있다.
그러나 설명적 연관이 정확하게 어떤 의미인지, 그리고 그 연관의 긴밀도가 어떻게 측정될 수 있는지는 아직 완전히 해결 되지 않은 문제이다. 이 문제와 관련된 최근 연구는 확률 이론을 활용하여 정합설을 발전시키고 있다.
'독서 > 인문' 카테고리의 다른 글
관객은 공포 영화의 괴물을 왜 무서워하는가(2019, 고2, 3월) (0) | 2019.07.21 |
---|---|
몸 주체 권력(2014, 고3, 7월B) (0) | 2019.02.02 |
안정복이 말하는 독서법(2014, 고3, 7월B) (0) | 2019.02.02 |
전국시대 사상가들이 모색한 공동체와 개인의 삶의 관계(2014, 고3, 7월A)^ (0) | 2019.02.02 |
고고학의 유물 해석 이론들(2014, 6월모평A) (0) | 2018.06.12 |
랑케와 드로이젠이 역사적 사실을 대하는 방식(2014, 고3, 4월B) (0) | 2018.06.11 |
조화(調和)로서의 '정의'(2014, 고3, 4월A)^ (1) | 2018.06.08 |
‘포스트휴먼’의 등장과 인간성에 대한 의문(2014, 고3, 3월B) (2) | 2018.06.07 |
🥤댓글 .