이미지 출처, 천재학습백과




청과물 상인들은 경험을 통해서, 제한된 공간 내에 가장 많은 과일을 조밀하게 채우는 방법은 육방밀집쌓기-가운데의 과일을 중심으로 테두리에 6개, 아래와 위로 각각 3개씩의 과일을 배열하는 방법-를 이용하는 것임을 알고 있다. 그러나 수학자들은 다르다. 아무리 오랜 경험을 통해서 얻어진 사실이라고 해도 엄밀한 과정을 통해서 증명되기 전까지는 옳고 그름에 대한 판단을 유보한다.


수학자들의 이러한 태도를 가장 잘 보여 주는 사례가 ‘뉴턴과 그레고리의 논쟁’이다. 하나의 구(球)와 접할 수 있는 구의 최대의 수를 두고, 뉴턴은 12개만이 가능하다고 주장했고 그레고리는 13개까지도 가능하다고 주장했다.


육방밀집쌓기의 경우, 12개의 구가 가운데 구와 접하고 있을 뿐만 아니라 서로와도 모두 접하고 있기 때문에 추가로 하나의 구가 비집고 들어갈 공간은 전혀 없다. 상식적으로 볼 때 뉴턴의 생각이 당연히 옳은 것처럼 보인다.


하지만 문제가 그렇게 단순하지만은 않다. 12개의 구가 가운데 구와 맞닿아 있으면서도 육방밀집쌓기와는 본질적으로 다른 배열이 있다. 가운데 구의 적도선의 바로 아래에 5개의 구를 배열한다. 그리고 그 5개의 구들과 엇갈리게 위쪽에 또 다른 5개의 구를 올려놓는다. 꼭대기와 맨 아래쪽에도 하나씩의 구를 놓는다. 이렇게 해서 만들어진 배열에는 12개의 구 사이사이에 여유 공간이 꽤 많이 존재한다.


수학적으로 계산을 해 보면 그 공간들 속으로 구 하나가 추가될 가능성이 좀 더 높아 보인다. 반지름이 1인 여러 개의 구들이 같은 크기의 구를 둘러싸고 있다고 하자. 이 모두를 반지름 3인 커다란 구 안에 넣는다. 가운데 구의 중심에 등불이 있어서 주위에 있는 구들의 그림자가 커다란 구의 표면에 생긴다고 해 보자. 계산을 해 보면, 그림자 각각의 면적은 7.6이고 외부의 커다란 구의 면적은 113.1이다. 113.1을 7.6으로 나누면 14.9가 된다. 이론적으로는 14개의 구까지도 들어갈 만큼 공간이 충분하다는 얘기이므로, 구들이 접할 때 생길 수밖에 없는 낭비되는 공간들을 고려하더라도, 그레고리의 주장이 옳을 것처럼 보이기도 한다.


하지만 당사자인 뉴턴과 그레고리는 각자의 주장을 수학적으로 증명해 보이지 못했기 때문에, 결국 이 문제는 2세기 반 동안이나 증명을 기다리며 미제인 채로 남아 있을 수밖에 없었다.


이 문제의 수학적인 해결은 두 종류의 증명을 통해 비로소 이루어졌다. 쉬테와 바르덴은 공동 연구를 통해 반지름이 1인 13개의 구와 동시에 맞닿을 수 있는 구는 그 반지름이 1보다 클 수밖에 없음(최소 1.04557)을 보였다. 또한 존 리치는 ‘구면삼각법’이라는 방법을 사용해서 동일한 반경의 구 13개가 같은 반경의 구와 맞닿도록 그물을 짜는 것이 불가능함을 증명해 보였다. 그레고리의 13개의 구에 내려진 사형 선고였다. 결국 ㉠뉴턴이 옳았던 것으로 판명이 난 것이다.


이제야 수학자들은 3차원 공간에서 크기가 동일한 한 구에 접할 수 있는 구의 최대의 수는 12라고 말할 수 있게 되었고, 이후부터는 가운데 구와 맞닿을 수 있는 구의 최대의 개수를 ‘뉴턴 수’라고 부르고 있다.


― 조지 G 슈피로, ‘케플러의 추측’