청과물 상인들은 경험을 통해서, 제한된 공간 내에 가장 많은 과일을 조밀하게 채우는 방법은 육방밀집쌓기-가운데의 과일을 중심으로 테두리에 6개, 아래와 위로 각각 3개씩의 과일을 배열하는 방법-를 이용하는 것임을 알고 있다. 그러나 수학자들은 다르다. 아무리 오랜 경험을 통해서 얻어진 사실이라고 해도 엄밀한 과정을 통해서 증명되기 전까지는 옳고 그름에 대한 판단을 유보한다. 수학자들의 이러한 태도를 가장 잘 보여 주는 사례가 ‘뉴턴과 그레고리의 논쟁’이다. 하나의 구(球)와 접할 수 있는 구의 최대의 수를 두고, 뉴턴은 12개만이 가능하다고 주장했고 그레고리는 13개까지도 가능하다고 주장했다. 육방밀집쌓기의 경우, 12개의 구가 가운데 구와 접하고 있을 뿐만 아니라 서로와도 모두 접하고 있기 때문에 추가..
tag그레고리 (1)
2023 지대기지 ― Theme by Anders Noren.